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Abstract-Series solutions of the type first proposed by Mercer [9, lo] are presented for laminar flow in 
tubes and annular passages (including the plane duct) with a step-change in either the temperature or the 
heat flux at one wall. This type of solution-which may be regarded as an extension of the well-known 
Ltv&que-solution [I]+constitutes a convenient alternative to the eigenvalue-solutions in the first part 
of the thermal entrance region where a large number of terms is required in the eigenfunction expansions. 
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non-dimensional velocity gradient at 
the wall ; 
coefficients in expansion of velocity 
profile ; 
(1 - I*)/( - In r*); 
hydraulic diameter ; 
1 + r*’ - B* 
Nusselt number, q”D,/[k(T, - T,)] ; 
parameter 

1 for solutions of the second kind ; 
0 for solutions of the third kind ; 

P&let number, u,D,/a ; 
heat flux at the wall ; 
radial co-ordinate ; 

rlr, ; 

rib,; 

Greek symbols 
a, thermal diffusivity ; 

;;21 
similarity variable, j/r; 
T(2)/< ; 

#3,: JY3’. 

5, (9X& ; 

@, q”D,lCW’w - T,)l. 

Subscripts 

e, entrance ; 

i, inner wall ; 

~(1 - r*)/l;;; 

parameter 
1 for subscript j = i ; 

- 1 for subscript j = o ; 
temperature ; 

(T - Wko - rW/k] ; 
(T - WKv - T,) ; 
axial velocity ; 

u/%l ; 
axial co-ordinate ; 

WWPe ; 
s(i’ - Fj)/(l - r*). 

L heated wall ; 

k opposite wall ; 

m, mean value ; 

0, outer wall ; 
- - 

x, r, x, y, partial differentiation with respect 
to the indicated variable. 

Superscripts 

(2)Y solution of the second kind ; 

(3)> solution of the third kind; 
I 
3 differentiation with respect to q. 

INTRODUCTION 

THE PROBLEM of heat transfer with hydro- 
dynamically developed laminar flow in tubes 
and other, geometrically simple, passages has 
traditionally been solved by the technique of 
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separation of variables, that is, as an eigenvalue the circular tube [lo] with a step-change in the 
problem. For the classical Graetz problem, the wall temperature. Apparently, however, Mercer 
circular tube and the flat duct with a step-change did not recognize the significance of this method 
in wall temperature, extremely accurate values for computing heat-transfer parameters in the 
for the first eleven (ten-for the flat ‘duct) eigen- upstream part of the thermal entrance region, 
values and eigen-functions have been computed and he computed only the temperature profiles. 
by Brown [l]. The tabulation of the eigen- The present author arrived at this type of 
functions has subsequently been extended up to solution, for a wider class of problems, from a 
order fifteen by Larkin [2] who used the slightly different angle, namely by considering a 
asymptotic eigenvalues found by Sellars, Tribus, perturbation of the Ltveque solution. The series 
and Klein [3]. Siegel, Sparrow and Hallman [4] solution obtained in this way allows the relaxa- 
presented a direct solution to the case of the tion of the two most severe restrictions of the 
circular tube with prescribed heat flux and com- similarity solution: that the velocity profile be 
puted the first seven eigenvalues and the related linear throughout the depth of penetration of the 
constants. For the annular duct with a heated temperature signal; and that the effect of curva- 
core and adiabatic outer wall Hatton and ture is neglected. Two remaining limitations 
Quarmby [5] have given the first ten eigen- which indicate the boundary-layer aspect of the 
values and related constants corresponding to a solution and cannot be removed by this tech- 
step-change in both the wall temperature and the nique are: (i) that the range of the similarity 
heat flux at the wall. The computations were variable goes to infinity, and (ii) that far away 
carried out for a range of radius ratios, including from the wall the temperature approaches the 
the limiting case of the flat duct. A very thorough inlet temperature of the fluid. These two con- 
treatment of the annulus problem has been ditions will, ultimately, limit the range in which 
published by Lundberg, McCuen and Reynolds the solutions are applicable but, as the numerical 
[6], based on four types of fundamental solu- results will show, they are not quite so restrictive 
tions [71-a step-change in the wall temperature as one might be inclined to think. 
or in the heat flux at one wall combined with Since condition (ii) also implies that the 
either zero heat flux at the opposite wall or the temperature gradient approaches zero far away 
opposite wall kept at the inlet temperature of from the wall, it follows that this type of solution 
the fluid. does not allow a distinction between different 

The eigenvalue method yields an exact solu- kinds of boundary conditions at the opposite 
tion for the entire thermal entrance region but, wall. Beyond the point where there is a significant 
near the point of a step-change in either the wall difference between the two types of fundamental 
temperature or the heat flux at the wall, a large solutions, with the opposite wall either adiabatic 
number of terms in the eigenfunction expansion or kept at the inlet temperature, the present 
is required. For this reason the similarity solutions will correspond to the adiabatic 
solution due to LCvi?que [8] is commonly used condition. 
immediately downstream of the step-change. 
However, since this approximation is valid only 
in a very restricted range, there is a need for a 
simple solution bridging the gap between the SOLUTION OF THE ENERGY EQUATION 

limit for the Ltveque solution and the point In the formulation of the problem we shall 
where the eigenvalue solution becomes manage- assume that the fluid properties are constant 
able. Such a solution has, in fact, been proposed and that both the viscous dissipation and axial 
by Mercer who presented a series solution of conduction are negligible. For fully developed 
the boundary-layer type for the flat duct [9] and flow in a duct with cylindrical symmetry the 
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THE THERMAL ENTRANCE REGION OF CIRCULAR 

energy equation then becomes variables are defined : 

TUBES 543 

with 
T(0, I) = T,, ri 

The remaining boundary 

< r < r,. (2) 

conditions for the 
four fundamental solutions defined by Reynolds, 
Lundberg and McCuen [7] are stated below. 
Here and in the following the subscript j refers 
to the heated wall and k to the opposite wall 
while the subscripts i and o refer to the inner 
and outer wall, respectively. 

I. 
r* = -! 

r0 

r i 
- 4x/D, 
X=Pe 

i; - f. 
y=s& 

and 
j, k = i, o ii=!!- 

urn 

+l s= 

i 

for j=i 
- 1 for j = 0. 

T-T 
T=e 

T, - T, 

Solutions of the first kind. (Temperature step f or 
at one wall; the opposite wall kept at the inlet 

solutions of the first and the third kind; 

temperature) : T-T, 

T(rj, X) = T, 
’ = (r, - ri) q;(/k 

T(r,, x) = T, 
x > 0. (3) for solutions of the second and the fourth kind. 

For the circular tube one has 

Solutions of the second kind. (Step in heat flux 
at one wall; the opposite wall adiabatic): 

r* = 0. 3 j = 0; s = -1; 

and for the flat duct 

T,(r), X) = sq;C/k r* = 1. 

YJr,, x) = 0. 
x > 0. (4) 

3 j = i; s= +l. 

When the new variables are introduced in 

Solutions of the third kind. (Temperature step 
equation (1) one obtains 

at one wall; the opposite wall adiabatic): K 
iiT?= TG+--- 

T(rj, x) = T, 
1 + Ry 

i!! (7) 

Tr(rk, x) = 0 
x > 0. (5) For the annular duct the velocity is given by 

Solutions of the fourth kind. (Step in heat flux 
at one wall; the opposite wall kept at the inlet 

U=G(l -P+Blnr;) 

temperature) : 
(8) 

T,(rj, X) = sqy/k 
= s [B ln(1 + Rj?) - ~RJJ - R2J2] 

T(r,, 4 = T, 
x > 0. (6) where B = (1 - r*2)/( - In r*) 

and M = 1 + r*2 - B. 
The following dimensionless parameters and For - 1 < RJ < 1 the expression (8) can be 
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expanded in powers of jj, 

where 

and 

u, : = 

ii = Ajql + -f qjq (9) 
n=l 

a, = - 
R(B + 25) 

2(B - 2F3)’ 

( - R)“B 

(n + 1) (B - 25)’ 
n = 2,3, . . . . 

For the circular tube we have 

A = 4, 

1 
a, = -2. 

a, = 0, n = 2,3, . . . . 

and for the flat duct 

A = 6, 

a1 = -1, 

a, = 0, n = 2,3, . . . . 

We now introduce the similarity variable from 
the Ltveque solution, 

? = Y/5* 
where 

t = (9x/A)+, 

and a dimensionless temperature function 

O(& ?I), 

0 = T for solutions of the third kind, 
and 

0 = T/c for solutions of the second kind. 

For sufficiently small values of 5 a solution of 
the form 

Oct. a) = 2 5”OM. (10) 
n=O 

is assumed. Introducing this expression, together 
with the expansion of the velocity profile ,(9), 
into equation (7), letting j = 51, and equating 
like powers of c, we obtain the following system 
of ordinary differential equations, 

0; + 3+0: - 3~~0, = 0 (Ifa) 

0:: + 3~~0; - 3(n + p) 118. 

= mz, {[(-RI”’ - 34~1~1 qm-r O;-, 

+ 3(n - m + p) amqm+l 19,_,} (lib) 

n = 1,2,... 

i 

0 for solutions of the third kind. 
’ = 1 for solutions of the second kind. 

For solutions of the second kind the boundary 
conditions are 

e;(o) = - 1; O,(Co) = 0 (124 

K(O) = 0; O,(co) = 0 (12b) 

and for solutions of the third kind we have 

O,(O) = 1 ; O,(cx3) = 0 (134 

O”(0) = 0; 8”(co) = 0. (13b) 

The second of the boundary conditions in 
(12a) and (13a) follows from the requirement of 
the similarity solution that two of the three 
original boundary conditions must combine 
into a single condition. At first sight this may 
seem to indicate that it is solutions of the first 
and the fourth kind we obtain. However. an 
examination of the asymptotic behavior of the 
solutions shows that for all n both 0, and 0; 
tend to zero for large values of q. Although, in 
principle, this corresponds to an adiabatic wall 
at infinity, the actual behavior of the solutions 
is such that 0; is of the order of 10-5-10-6 
already for values of q between 2.5 and 3. Thus, 
as long as 

511 max G 1, 

where v,,, is the value for which O:, is, in effect, 
zero, we have the adiabatic condition at the 
opposite wall. The aforementioned condition 
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consequently determines the maximum value of 
X for which the solutions will be valid, 

%n,X = A/(913,,). 

For annular ducts with the outer wall heated 
the values of X, vary between those for the 
circular tube and the flat duct, respectively. With 

tl max = 2.5 this range is 

0.028 < x,,, < 0042. 

Values of Xmax for annuli with the inner wall 
heated and r* 2 0.5 lie above the value for the 
flat duct; if, however, the radius ratio is less 
than 0.5, a more restrictive condition follows 
from the power series expansion of the velocity 
profile, namely Rj < 1. This gives 

r* A 
x,,, = - ~ 

1 - r* 9~:~~’ 

For a step-change in the wall temperature 
(p = 0) the solution of the unperturbed equation 
(lla) is the well-known LCv&que solution, 

1 
(3C3) = 1 _ ~ 0 

I($) s 
eep3 dlc. (14) 

0 

The corresponding solution for uniform heat 

flux@ = 1)is 

2 
p) = -e 

-+ 0 3 r(s) 

Of the higher order equations only the one 
of first order for a step-change in the wall 
temperature has a simple solution, 

(16) 

The remaining equations, up to order six, 
were solved numerically on the IBM 7090 com- 
puter of Northern Europe University Computing 
Center, Lyngby, Denmark. A direct finite- 
difference method was used with difference 
corrections including those of sixth order. 

From equations (15) and (14) respectively, 
one finds 

0c2) (0) = 0.73849 ; 0 

g3”(0) = - 1.11984. 

The values of e’,“(O) and 19(~)‘(o) for the higher- 
order solutions are given in Tables 14. 

Table 1. Solutions of the second kind. Step in heatflux at the inner wall 

r* W(O) W(O, eg’0 t%‘(O) @O WCQ 

0.10 - 1.69193 5.13625 - 17.2187 62.548 - 243.58 1017.9 
0.25 -0.51254 0.53520 -0.55792 0.67666 - 0.83333 1.14761 
0.5 -0.10992 0.06597 - OGOO56 0.01662 om779 0.01027 
1.0 009635 004004 0.02292 0.01575 0.01232 0.01068 

Table 2. Solutions of the second kind. Step in heatflux at the outer wall 

r* W(O) es:(O) ea:co, ebW) ea,‘CO, eaQ(O) 

0 0.28904 0.13816 007174 0.03957 0.02317 0.01447 
0.02 0.29709 0.14945 0.08297 004951 0.03164 002171 
0.05 0.29287 0.14655 0.08 146 004894 0.03163 0.02203 
0.10 0.28388 0.13947 0.07684 004613 0~03001 0.02116 
0.25 0.25369 0.11615 0.06156 0.03652 0.02401 0.01742 
0.5 0.20130 0.08183 0.04165 0.02506 0.01729 0.01341 
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Table 3. Solutions of the third kind. Temperature step at the inner wall 

r* 6$“(O) &g”(O) 6$:“(o) 6$“(O) l.?g”(O) 0$“(O) 

0.10 -3.51217 4.11635 - 12.4886 52.471 -248.11 1289.4 
0.25 - 1.06355 0.54222 - 0.35923 0.64884 -0.82619 1.56288 
0.5 -0.22818 0.13144 0.04316 0.05141 OG4O67 0.04568 
1.0 - 0.2OOOO 0.07357 0.04645 0.03639 0.03308 0.03272 

Table 4. Solutions of the third kind. Temperature step at the outer wall 

r* @z? (0) @A” (0) @A” (0) e;y (0) @A” (0) @A” (0) 

0 06OOOO 0.08992 0.04313 0.02697 0.01943 co1539 
0.02 0.61671 0.10398 005497 0.03770 002971 0.02569 
0.05 060795 @lO444 0.05597 0.03892 0.03111 0.0273 1 
0.10 0.58929 0.10269 0.05551 0.03898 0.03150 0.02799 
0.25 0.52663 0.09427 0.05158 0.03683 003040 0.02770 
0.5 0.41787 0.08176 OQ4660 0.03462 0.02972 0.02814 

For solutions of the second kind the non- 
dimensional wall temperature is, to the Nth 
approximation, 

N 

y=(J) = 
9% (n+1)/3 

J cc 1 -z- 
q.w). (17) 

n=O 

Correspondingly, the non-dimensional heat flux 
for solutions of the third kind is 

N 

@W = -2 

9x O-1)/3 

J cc > 2 
q,3f!‘(o). (18) 

n=o 

The mixed mean temperatures, determined from 
an energy balance over the duct length X, are 

7w, = 
I& J 

773). = _ 2A ‘j 
~8. J 3 l+r* 

x 2 & (;)@+“I3 @‘(O). (20) 

n=O 

Finally, the Nusselt numbers become 

Nu!z’ = 2/( r - T(Z) ,) 
J J m, J (21) 

NU!3’ = @W/(1 - T(3) .). 
J J m. J (22) 

In Tables 5-8 these quantities (with the excep- 
tion of Tg,)j) are presented for selected values 
of 2. 

From the nature of the present solution it is 
obvious that the results will be more accurate 
the smaller 2 is. As Z increases the influence of 
the higher-order solutions becomes more pro- 
nounced and due to the recursive method of 
solution, both rounding errors and truncation 
errors tend to build up. However, except for the 
cases mentioned below, the higher-order solu- 
tions are well-behaved in the sense that neither 
the functions themselves nor their derivatives 
increase significantly in magnitude with in- 
creasing order. In the finite-difference solution 
the iteration was continued until the maximum 
deviation between two successive sets of differ- 
ence corrections was less than 5 . 10e6. The 
convergence was very rapid (with a step-width 
of O-1 only two iterations were necessary), so the 
magnitude of the neglected difference corrections 
is probably not larger than 10W6. 

A less satisfactory behavior is found for the 
annular duct with the inner wall heated when 
r* is less than 0.5. As r* decreases below this 
value the magnitude of the higher order func- 
tions increase rapidly, and the convergence of 
the series solution becomes increasingly slow. 
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Table 5. Solutions of the second kind. Step in heat flux at the 
inner wall 

r* x T’,2’ Ni((*) Reference [ 1 l] 

0.10 10-4 
2.10-4 
4. 1o-4 

lo- 3 

0.25 1o-4 0.033762 59.308 
2. 1o-4 0.042203 47.480 
4. 1o-4 0.052654 38.100 

lo-” 0070294 28.615 
2.10-j 0087183 23.153 
4.10-a 0.10777 18.838 

1o-2 0.14179 14.52 
2.10-* 0.1736 12.08 

05 1O-4 0.037125 53.969 
2. 1o-4 0.046689 42.960 
4. 1o-4 0.058690 34.233 

10-S 0.079350 25.418 
2.10-’ OQ99610 20.35 1 
4.10-3 0.12495 16.356 

1o-2 0.16838 12.367 
2. 1o-2 0.21082 10.127 
4.10-* 0.26382 8.434 

1 1o-4 

2.10-4 
4. 1o-4 

lo-” 

2. lo-” 
4. lo-” 

lo-* 
2.10-* 
4.10-Z 

0.02797 78.56 
0.0345 1 5802 
0.04239 47.27 
0.05519 36.31 

0039516 50.740 
0049881 40.257 
0.062997 31.950 
0.085863 23.568 
0.10864 18.754 
0.13764 14964 
0.18869 11.193 
0.24024 9.081 
0.30702 7.490 

48.3 
36.7 

39.5 
29.1 
23.3 
18.9 
14.52 
12.08 

34.6 
25.6 
20.4 
16.4 
12.37 
10.13 
8.433 

23.5 

11.2 

7.4895 

Table 6. Solutions of the second kind. Step in heat flux at 
the outer wall 

TP’ Nu:" Reference [3] 

1O-4 0.046018 43.651 
W4 0.058358 34.511 
1o-4 0.074126 27.276 
10-a 0.10207 19,987 
lo-’ 0.13048 15.813 (15.07) 
10-B a16751 12.538 (12.42) 
10-Z 0.23517 9.295 9.293 
1O-2 0.30689 7.494 7.494 
10-Z 040528 6.149 6.148 

Table 6-continued 

r* x T’2’ 0 Nu:” Reference [ 1 I] 

0.02 1o-4 oQ43935 45.726 
2. lo-’ 0055706 36.157 
4. 1o-4 0.070753 28.584 

1o-3 0.097399 20.956 
2. lo-” 0.12448 16.589 
4. 1o-3 0.15977 13.164 

1o-2 0.22419 9.776 
2.10-l 0.22243 7.898 
4.1o-2 0.38601 6.502 

0.05 1o-4 0.043471 46.210 
2. 1o-4 0.055109 36.544 
4. 1o-4 0.069981 28.894 

1o-3 0096302 21.187 
2.10-3 0.12304 16.774 
4.10-S 0.15784 13.314 

10-z 0.22130 9.889 
2. 1o-2 0.28840 7.990 
4. 1o-2 0.38022 6,578 

0.10 1o-4 0~043006 46.703 
2. 1o-4 0.054505 36.940 
4.10-4 0.061192 29,212 

1o-3 0.095162 21.426 
2. 1o-3 012151 16.967 
4. lo-” 0.15576 13.469 

10-Z 0.21808 1om5 
2. 1o-2 0.28379 8.083 
4. 1o-2 0.31337 6.652 

0.25 1o-4 0.042127 41.657 
2. 1o-4 0.053353 31.713 
4. 1o-4 0.067665 29.840 

10-j 0092907 21904 
2. lo-” 0.11843 17.356 
4.10-3 0.15148 13.786 

1o-2 0.21122 10.245 
2.10-Z 0.27369 8.275 
4. 1o-2 0.35799 6.803 

0.5 1o-4 0041098 48.823 
2. 1o-4 0.051989 38668 
4. 1o-4 0.065837 30.626 

1o-3 0.090161 22.516 
2. lo-” 0.11463 17.864 
4.10-a 0.14611 14.207 

1o-2 0.20247 10.574 
2.10-Z 0.26065 8.548 
4.10-Z 0.33795 7.027 

29.3 
21.3 
16.8 
13.2 
9.784 
7.898 
6.5017 

29.7 
21.5 
16.9 
13.4 
9.895 
7.991 
6.5116 

29.9 
21.7 
17.1 
13.50 
10.01 
8.083 
6.6517 

30.2 
22.0 
17.4 
13.80 
10.25 
8.275 
6.8025 

30.8 
22.6 
179 
14.21 
10.57 
8.541 
7.0265 

Since, furthermore, the range of E in which the 
solutions are valid decreases as r*/(l - r*), 
solutions with heating at the inner wall are 
given only for r* 2 0.1. 
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Table I. Solutions of the third kind. Temperature step at the inner wall 

r* x q3’ *In 7=!3’ N,,! 3, Reference [ 1 l] 

0.10 

0.25 

@5 

1 

10-e 
2.10-4 
4.10-4 

lo-’ 

10-a 
2.10-h 
4. 1o-4 

10-J 
2.10-a 
4.10-3 

10-Z 
2. 1o-2 

1o-4 
2. 1o-4 
4. 1o-4 

10-S 
2.10-a 
4.10-3 

10-Z 
2. 1o-2 
4.10-l 

10-b 
2.10-4 
4.10-d 

10-3 
2.10-3 
4.10-3 

10-Z 
2.10-* 
4.10-Z 

60.873 OQOO80 iiO.922 
49.632 OGO129 49.696 
40.68 oOO210 40.77 
31.57 oOO402 31.70 

49.538 0.00 147 49.611 
39.734 OGO234 39.828 
31.948 oOO375 32.068 
24.053 OGI702 24.223 
19.483 0.01130 19.705 
15.844 0.01826 16.139 
12.138 0.03460 12,574 
9.98 0.0564 10.57 

44.669 0.00223 44.768 
35,541 oGO354 35.668 
28.295 OGO563 28.456 
20,954 0.01041 21,175 
16.711 0.01658 16.993 
13.339 0.02642 13.701 
9.916 oO49OO 10.427 
7,930 0.07824 8.603 
6.341 0.12501 7,241 

41.744 oOO314 41,876 
33.046 OQO498 33.212 
26.141 0.00788 26.349 
19.147 0.01447 19,428 
15,106 0.02288 15.459 
11.895 0.03613 12.341 
8,638 0.06596 9.248 
6.750 0.10371 7.531 
5.243 0.16253 6.260 

40.4 
31.5 

32.0 
24.2 
19.7 
16.11 
12.56 
10.57 

28.4 
21.1 
17.0 
13.68 
10.42 
8.602 
7.2465 

19.4 

9.25 

6.259 

Table 8. Solutions of the third kind. Temperature step at the outer wall 

r* ?c 

0 10-4 
2. 1o-4 
4. 1o-4 

10-3 
2.10-3 
4.10-3 

10-z 

2. 1o-2 
4. 1o-2 

@W 
0 

73’ 
om 

35.612 O~OO540 
28.013 0.00853 
21.979 0.01343 
15.867 0.02442 
12,334 0.03825 
9,526 0.05968 
6.674 0.10657 
5.019 0.16378 
3,693 0.24890 

Nua’ Reference [ 121 

35.806 35.80 
28.254 28.26 
22.278 22.29 
16.264 16.28 
12,824 12.82 
10,130 10.13 
1,470 7.470 
6,002 6.002 
4.917 4.916 

002 1o-4 37.306 oGO555 37,515 
2. 1o-4 29.350 OGO876 29.609 
4. 1o-4 23.033 001380 23.355 

10-S 16.633 0.02509 17.061 
2.10-3 12.934 0.03930 13.463 
4.10-3 9.993 0.06134 10.646 

Reference [l l] 

23.5 
17.2 
13.6 
10.8 
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Table 8--continued 

r* x @W 0 T(3’ 0nl Nut3’ 0 Reference [ 1 l] 

0.05 

0.10 

0.25 

0.5 

1o-2 
2. 1o-2 
4. 1o-2 

1o-4 
2. 1o-4 
4. 1o-4 

1o-3 
2. 1o-3 
4.10-3 

1o-2 

2. 10-z 
4. 1o-2 

1o-4 
2.10-4 
4. 1o-4 

1o-3 

2. 1o-3 
4. 1o-3 

1o-2 
2. 1o-2 
4. 1o-2 

1o-4 
2. 1o-4 
4. 1o-4 

1o-3 
2. 1o-3 
4. lo-’ 

1o-2 
2. 1o-2 
4.10-* 

1o-4 
2. 1o-4 
4. 1o-4 

10-S 
2. 1o-3 
4. lo-” 

1o-2 
2. 1o-2 
4. 1o-2 

7.006 0.10958 7.869 7914 
5.272 0.16848 6.340 6.350 
3.881 0.25616 5.218 5.2174 

37.714 oGO545 37920 
29.676 OGO860 29934 
23.296 0.01355 23.616 
16.832 0.02464 17.257 
13.095 0.03862 13.621 
10.125 0.0603 1 10.774 
7,108 0.10782 7967 
5.356 0.16591 6.422 
3952 0.25255 5.287 

23.7 
17.4 
13.7 
10.9 
8.000 
6.428 
5.2868 

38.135 0.00525 38.367 
30.019 OGO830 30.270 
23.576 0.01308 23.888 
17.048 0.02380 17.464 
13.274 0.03732 13.789 
10.276 0.05832 10912 
7.230 0.10440 8.073 
5462 0.16087 6.508 
4.045 0.24535 5.360 

240 
17.5 
13.9 
1100 
8.095 
6.513 
5.3590 

38972 090472 39.157 
30.710 0.00746 30940 
24.150 0.01176 24.438 
17.506 0.02144 17.889 
13.665 0.03368 14.141 
10.613 0.05273 11.204 
7.515 0.09475 8.301 
5.717 0.14658 6.698 
4.278 0.22480 5.518 

24.5 
17.9 
142 
11.2 
8.311 
6,700 
5.5176 

40.015 oQO403 40.177 
31.583 0.00637 31,786 
24.890 0~01007 25.143 
18.109 001840 18448 
14191 0.02897 14.614 
11.077 0.04549 11.605 
7918 0.08222 8.628 
6.086 0.12798 6979 
4.622 0.19789 5.762 

25.1 
18.5 
14.6 
11.6 
8.629 
6980 
5.7615 

COMPARISON WITH PREVIOUS SOLUTIONS 

In Tables 5-8 Nusselt numbers from other 
sources are included for comparison with the 
present results. For the annular passages and the 
flat duct the solution by Lundberg et al. [7] is 
taken.7 The values for the circular tube with a 

t Numerical values are taken from reference [ 111. 

step-change in wall temperature are those pre- 
sented by Munakata [12] who used the eigen- 
values and eigenfunctions computed by Brown 
[l]. For the circular tube with a step-change in 
heat flux at the wall Nusselt numbers were 
computed from the eigenvalues and related 
constants given by Sellars et al. [3]. 

In the downstream part of the range the 
agreement with the eigenvalue solutions is 
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excellent. For small values of X, however, and 
in particular where the previous results are based 
on the simple L&Zque solution, the present 
solution yields more correct values. The results 
for the circular tube with a step-change in the 
wall heat-flux show that the seven eigenvalues 
computed by Sellars et al. are sufficient only for 
% > lo-‘. This indicates that from the point of 
view of computational effort it would be advan- 
tageous to switch from the eigenvalue solution 
to the extended LCvCque solution at values of S 
in the neighborhood of 10e2. 

For the circular tube with a step-change in 
the wall temperature Munakata [12] obtained 
an improved asymptotic solution for small 
values of X by replacing the summation of 
eigenfunctions by the corresponding integral. 
It is interesting to note that the resulting expres- 
sions are essentially the same as those obtained 
from the first order perturbation of the Ltveque 
soluti0n.t 

CONCLUDING REMARKS 

The present analysis and the subsequent 
numerical results have clearly demonstrated the 
usefulness of the extended LCv8que solution for 
computing heat-transfer rates or wall tempera- 
tures in the thermal entrance region with fully 
developed laminar flow. With a maximum of 
six terms in the fundamental solutions this 
method takes over at the point where the 
eigenvalue solutions become cumbersome due 
to the large number of terms required. The fact 
that with this type of solution one cannot 
discriminate between different kinds of boundary 

t For the heat flux at the wall Munakata’s result is 
(in terms of the present notation) : 

Cp = 1.3566(x/4)-+ - 1.21 
Apart from a minor difference in the constant term (1.21 vs. 
6/5) this is identical with equation (18) for N = 1 and r* = 0. 

conditions at the opposite wall is of no conse- 
quence if the solutions are used only for X < 
10m2; up to this point the differences between 
solutions of the first and the third kind and 
between solutions of the second and the fourth 
kind are quite negligible. 
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R&smtn&Des solutions en series du type propose pour la premiere fois par Mercer [9. lo] sont present&z 
pour I’tcoulement laminaire dans des tubes et des conduites annulaires (y compris la conduite a section en 
rectangle aplati) avec une variation en echelon soit de la temperature soit du flux de chaleur a l’une des 
parois. Ce type de solution-qui peut etre regard& comme une extension de la solution bien connue de 
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Ltv&pre [S] constitue une alternative convenable auz solutions avec valeurs propres dans la premiere 
partie des regions d’entree thermique oit un grand nombre de termes sont necessaires dans les developpe- 

ments en fonctions propres. 

Zmammeufasasmg-Reihenlosungen von der Art, wie sie zuerst von Mercer [9, lo] vorgeschlagen wurden, 
sind filr_laminare Striimung in Rohren und Ringspalten (einschliesslich ebener Kanlle) mit einer sprung- 
haften Anderung entweder der Temperatur oder des Wlrmetlusses an einer Wand angegeben. Diese Art 
der Losung-sie kann als Erweiterung der Leveque-L6sung [8] gelten-stellt eine bequeme Alternative 
zur Eigenwertlosung fiir den ersten Teil des thermischen Einlaufbereichs dar, fiir den eine grosse Zahl von 

Ausdriicken ftlr die Eigenfunktionsentwicklung erforderlich sind. 

ABaoTaqHa-&tB JraMHHapHoro TeYeHAR B Tpy6ax B KOZlbqeBblX KaHaJlaX, BKJIlOSafl IlJlOCKMe 
KaHaJlbI C U8tdeHHlO~eftCH CTylleH'laTO$i TeMnepaTypOii HZ&l IlJIOTHOCTbW) TeIIJIOBOrO IIOTOKP, 

nonyqeau pelueHm B Bqe ~RZ[OB Tma, BnepBHe npennomeaaoro MepcepoB [9, lo]. ~TOT 

Tlill peIUeHUFl, KOTOpblii MOmHO paCCMaTpHBaTb KPK J.(aJIbHehlIee pa8BkiTKe HaBeCTHOrO 

pemeHm JIeBeKa [8], ygo6Ho WCnOnbBOBaTb B riaqane TemlOBOrO BXO~HOrO yvacTKa, rae 

AJIll pa%'IOHteHIlfl II0 CO6CTBeHHblM +yHK~EiHM Tpe6yeTCR: 6onbmoe KOJIU'leCTBO 'IJIeHOB. 


