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Abstract—Series solutions of the type first proposed by Mercer [9, 10] are presented for laminar flow in
tubes and annular passages (including the plane duct) with a step-change in either the temperature or the
heat flux at one wall. This type of solution—which may be regarded as an extension of the weli-known
Lévéque-solution [8]—constitutes a convenient alternative to the eigenvalue-solutions in the first part
of the thermal entrance region where a large number of terms is required in the eigenfunction expansions.

NOMENCLATURE Greek symbols
non-dimensional velocity gradient at a, thermal diffusivity;
the wall; n, similarity variable, y/&;
coefficients in expansion of velocity 0®, TP,
profile; 0, T,
(I = r»/(—Inr*); & (9%/A4);
hydraulic diameter; @, q'DJ[KT, — T,)]
1 + r*? — B;
Nusselt number, ¢"D,/[KT,, — T,)]; Subscripts
parameter e, entrance;
1 for solutions of the second kind; i, inner wall;
0 for solutions of the third kind ; J heated wall;
Péclet number, u,,D,/a; k, opposite wall;
heat flux at the wall; m, mean value;
radial co-ordinate; 0, outer wall;
rir,; x,r, X, y, partial differentiation with respect
rits; to the indicated variable.
s(1 — r*)/r;;
+1 for subscript j = i; Superscripts
parameter —1 for subscript j = o; (2),  solution of the second kind;
temperature ; (3), solution of the third kind;
(T — TY/[(r, — r)q"/k]; ’ differentiation with respect to .
(T - AT, — T);
axial velocity ; INTRODUCTION
ufu,,; THE PROBLEM of heat transfer with hydro-
axial co-ordinate ; dynamically developed laminar flow in tubes
4(x/D,)/Pe; and other, geometrically simple, passages has
s(F — F)/(1 — r*). traditionally been solved by the technique of
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separation of variables, that is, as an eigenvalue
problem. For the classical Graetz problem, the
circular tube and the flat duct with a step-change
in wall temperature, extremely accurate values
for the first eleven (ten*for the flat duct) eigen-
values and eigen-functions have been computed
by Brown [1]. The tabulation of the eigen-
functions has subsequently been extended up to
order fifteen by Larkin [2] who used the
asymptotic eigenvalues found by Sellars, Tribus,
and Klein [3]. Siegel, Sparrow and Hallman [4]
presented a direct solution to the case of the
circular tube with prescribed heat flux and com-
puted the first seven eigenvalues and the related
constants. For the annular duct with a heated
core and adiabatic outer wall Hatton and
Quarmby [5] have given the first ten eigen-
values and related constants corresponding to a
step-change in both the wall temperature and the
heat flux at the wall. The computations were
carried out for a range of radius ratios, including
the limiting case of the flat duct. A very thorough
treatment of the annulus problem has been
published by Lundberg, McCuen and Reynolds
[6], based on four types of fundamental solu-
tions [ 7]—a step-change in the wall temperature
or in the heat flux at one wall combined with
either zero heat flux at the opposite wall or the
opposite wall kept at the inlet temperature of
the fluid.

The eigenvalue method yields an exact solu-
tion for the entire thermal entrance region but,
near the point of a step-change in either the wall
temperature or the heat flux at the wall, a large
number of terms in the eigenfunction expansion
is required. For this reason the similarity
solution due to Lévéque [8] is commonly used
immediately downstream of the step-change.
However, since this approximation is valid only
in a very restricted range, there is a need for a
simple solution bridging the gap between the
limit for the Lévéque solution and the point
where the eigenvalue solution becomes manage-
able. Such a solution has, in fact, been proposed
by Mercer who presented a series solution of
the boundary-layer type for the flat duct [9] and
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the circular tube [10] with a step-change in the
wall temperature. Apparently, however, Mercer
did not recognize the significance of this method
for computing heat-transfer parameters in the
upstream part of the thermal entrance region,
and he computed only the temperature profiles.

The present author arrived at this type of
solution, for a wider class of problems, from a
slightly different angle, namely by considering a
perturbation of the Lévéque solution. The series
solution obtained in this way allows the relaxa-
tion of the two most severe restrictions of the
similarity solution: that the velocity profile be
linear throughout the depth of penetration of the
temperature signal; and that the effect of curva-
ture is neglected. Two remaining limitations
which indicate the boundary-layer aspect of the
solution and cannot be removed by this tech-
nique are: (i) that the range of the similarity
variable goes to infinity, and (ii) that far away
from the wall the temperature approaches the
inlet temperature of the fluid. These two con-
ditions will, ultimately, limit the range in which
the solutions are applicable but, as the numerical
results will show, they are not quite so restrictive
as one might be inclined to think.

Since condition (ii) also implies that the
temperature gradient approaches zero far away
from the wall, it follows that this type of solution
does not allow a distinction between different
kinds of boundary conditions at the opposite
wall. Beyond the point where there is a significant
difference between the two types of fundamental
solutions, with the opposite wall either adiabatic
or kept at the inlet temperature, the present
solutions will correspond to the adiabatic
condition.

SOLUTION OF THE ENERGY EQUATION

In the formulation of the problem we shall
assume that the fluid properties are constant
and that both the viscous dissipation and axial
conduction are negligible. For fully developed
flow in a duct with cylindrical symmetry the
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energy equation then becomes

unT, = (T, (1)

with
TO,r) = T, rn<r<r, (2)

The remaining boundary conditions for the
four fundamental solutions defined by Reynolds,
Lundberg and McCuen [7] are stated below.
Here and in the following the subscript j refers
to the heated wall and k to the opposite wall
while the subscripts i and o refer to the inner
and outer wall, respectively.

jk=1io0
and

st for j=1i
" 1=1 for j=o.

Solutions of the first kind. (Temperature step
at one wall; the opposite wall kept at the inlet
temperature):

T(rpx) =T,
T(rk, X) = Te

Solutions of the second kind. (Step in heat flux
at one wall; the opposite wall adiabatic):

x>0 (3)

T(rj, x) = sqj/k

T(r, %) = 0, x>0 4

Solutions of the third kind. (Temperature step
at one wall; the opposite wall adiabatic):

T(rp,x) =T,
Tir, x) = 0 x> 0. 5

Solutions of the fourth kind. (Step in heat flux
at one wall; the opposite wall kept at the inlet
temperature):

T(r;, x) = sqj/k
T(rk’ x) = T;

The following dimensionless parameters and

x > 0. 6)
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variables are defined:

.
F=—
rO
r* = I
ro
_ p¥
R sl - r
T
_  4x/D,
x= Pe
- r—r
=35
y 1 —r
_ u
i =—
um
~ T-T
T = ¢
T,-T.
for solutions of the first and the third kind;
— T-T,
T -
r, — 1) qj/k

for solutions of the second and the fourth kind.
For the circular tube one has

r*=0;, j=o; s=—1;
and for the flat duct
r¥=1; j=1i; s = +1.

When the new variables are introduced in
equation (1) one obtains
R

aT. = T,
EE BT TRy

T (7
For the annular duct the velocity is given by

2
i=—r(l -7 +Bln7)

2r¥?
M
where B = (1 — r*2)/(— Inr*)
andM =1+ r*2 — B
For —1 < Ry < 1 the expression (8) can be

[B1n(1 + Rj) — 2Ry — R}%] (8)
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expanded in powers of j,

= Ayl + Y aj" 9)
n=1
where
2R
R(B + 2}
N BT
2(B —27)
and
—R)"B
a, = ( ) n=23,....

"T h+ D(B -2/

For the circular tube we have

A =4

a = -4

a, =0, n=23,
and for the flat duct

A =6,

a; = —1,

a, =0, n=213

We now introduce the similarity variable from
the Lévéque solution,
n =yl
where
& = (9%/A),

and a dimensionless temperature function

o, n),

0 = T for solutions of the third kind,
and
9 = T/¢ for solutions of the second kind.

For sufficiently small values of £ a solution of
the form

& n) = 20 Em0.(m). (10

is assumed. Introducing this expression, together
with the expansion of the velocity profile (9),
into equation (7), letting j = &5, and equating
like powers of &, we obtain the following system
of ordinary differential equations,

0 + 3n%0, — 3png, =0 (11a)
6, + 3n%0, — 3(n + p)nb,
= Zl {[(_R)m - 3amn3] ’7’"*1 0;1—m
+3mn—-m+pant0,_,5 (11b)

n=12...

_ ) 0 for solutions of the third kind.
P =1 for solutions of the second kind.

For solutions of the second kind the boundary
conditions are

6,(0) = —1; 0,(0) =0 (12a)
6,(0) = 0; 0(0) =0  (12b)
and for solutions of the third kind we have
8,00 = 1; B,(0) =0 {13a)
6,0) = 0; B (0) =0.  (13b)

The second of the boundary conditions in
(12a) and (13a) follows from the requirement of
the similarity solution that two of the three
original boundary conditions must combine
into a single condition. At first sight this may
seem to indicate that it is solutions of the first
and the fourth kind we obtain. However, an
examination of the asymptotic behavior of the
solutions shows that for all n both 6, and 0,
tend to zero for large values of #. Although, in
principle, this corresponds to an adiabatic wall
at infinity, the actual behavior of the solutions
is such that 6, is of the order of 107°-107°
already for values of n between 2-5 and 3. Thus,
as long as

ér’max < 1

where 7,,,, is the value for which 8, is, in effect,
zero, we have the adiabatic condition at the
opposite wall. The aforementioned condition
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consequently determines the maximum value of
x for which the solutions will be valid,

= _ 3
Xmax — A/(971 max)-
For annular ducts with the outer wall heated
the values of x,,, vary between those for the

circular tube and the flat duct, respectively. With
= 2-5 this range is

0028 < Xy < 0042,

nmax

Values of x,,,, for annuli with the inner wall
heated and r* > 05 lie above the value for the
flat duct; if, however, the radius ratio is less
than 0-5, a more restrictive condition follows
from the power series expansion of the velocity
profile, namely Ry < 1. This gives

r* A

N I —r* 9']31“-

xmax

For a step-change in the wall temperature
{p = 0) the solution of the unperturbed equation
(11a) is the well-known Lévéque solution,

1 3
B =1—— e " dn
r(%)f g

0

{14)

The corresponding solution for uniform heat
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flux (p = 1)is
2) 2 -
3T

2 ¢ 3
- n[l - i:(—%—)jue K dy]. (15)

Of the higher order equations only the one
of first order for a step-change in the wall
temperature has a simple solution,

R a a
3 = _ [Z Lpet3) L2033y (16
0 (2+5>n90+5n05, (16)

The remaining equations, up to order six,
were solved numerically on the IBM 7090 com-
puter of Northern Europe University Computing
Center, Lyngby, Denmark. A direct finite-
difference method was used with difference
corrections including those of sixth order.

From equations (15) and (14), respectively,
one finds

92)(0) = 0-73849;
031(0) = ~1-11984.

The values of 82Y(0) and 6”(0) for the higher-
order solutions are given in Tables 1-4.

Table 1. Solutions of the second kind. Step in heat flux at the inner wall

r 641'(0) #30) 830 R W) #2(0)
010  —169193 513625 —17-2187 62-548 —243-58 10179
025  —051254 0-53520  —0-55792 067666 —0-83333 1-14761
05 —0-10992 006597  —0-00056 0-01662 0-00779 001027
1-0 0-09635 0-04004 002292 0-01575 001232 001068
Table 2. Solutions of the second kind. Step in heat flux at the outer wall

™ 02(0) 030 #31(0) 8530) %20 02(0)
0 0-28904 0-13816 0-07174 0-03957 0-02317 001447
002 0-29709 0-14945 0-08297 0-04951 0-03164 002171
0-05 0-29287 0-14655 0-08146 0-04894 0-03163 0-02203
0-10 0-28388 0-13947 007684 004613 0-03001 0-02116
025 0-25369 0-11615 006156 0-03652 0-02401 001742
05 0-20130 008183 0-04165 0-02506 001729 001341
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Table 3. Solutions of the third kind. Temperature step at the inner wall

r 63"(0) 63(0) #3(0 #3(0) #3"(0) 63"
010  -351217 411635 —12-4886 52:471 —248-11 12894
025 —1-06355 0-54222 —0-35923 0-64884 —0-82619 1-56288
05 —0-22818 0-13144 0-04316 0-05141 004067 0-04568
10 - 0-20000 007357 0-04645 0-03639 0-03308 003272

Table 4. Solutions of the third kind. Temperature step at the outer wall

" e 63" (0) 83’ (0) 65 (0) o3’ (0) 62’ (0)
0 0-60000 0-08992 004313 002697 001943 001539
002 0-61671 010398 005497 0-03770 002971 002569
0-05 060795 0-10444 005597 0-03892 003111 002731
0-10 0-58929 0-10269 005551 003898 0-03150 002799
025 0-52663 009427 0-05158 0-03683 0-03040 002770
05 041787 008176 0-04660 003462 002972 002814

For solutions of the second kind the non-
dimensional wall temperature is, to the Nth
approximation,

N
o 956- (n+1)/3
TP = E (—Ar) 620. (17

n=0

Correspondingly, the non-dimensional heat flux
for solutions of the third kind is

. (n—1)/3
@5.3) = -2 <9_)f)
z ; \ A4

n=0

oR0. (18)

The mixed mean temperatures, determined from
an energy balance over the duct length X, are

- 2r.  _
o= 1 +Jr* (19)
_ 24 T,
3) _ _ i
T’ 3 1+r*
N (n+2)/3
1 [9x\"
x E — (7) 030,  (20)

n=0
Finally, the Nusselt numbers become
NuP = 2T, - TD)
Nu® = ¢3/(1 — T))).

@y
22

In Tables 5-8 these quantities (with the excep-
tion of T;) are presented for selected values
of X.

From the nature of the present solution it is
obvious that the results will be more accurate
the smaller X is. As X increases the influence of
the higher-order solutions becomes more pro-
nounced and, due to the recursive method of
solution, both rounding errors and truncation
errors tend to build up. However, except for the
cases mentioned below, the higher-order solu-
tions are well-behaved in the sense that neither
the functions themselves nor their derivatives
increase significantly in magnitude with in-
creasing order. In the finite-difference solution
the iteration was continued until the maximum
deviation between two successive sets of differ-
ence corrections was less than 5 . 107°. The
convergence was very rapid (with a step-width
of 0-1 only two iterations were necessary), so the
magnitude of the neglected difference corrections
is probably not larger than 107°.

A less satisfactory behavior is found for the
annular duct with the inner wall heated when
r* is less than 0-5. As r* decreases below this
value the magnitude of the higher order func-
tions increase rapidly, and the convergence of
the series solution becomes increasingly slow.
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inner wall
r* x T?® Nu{®  Reference [11]
010 1074 002797 78-56
2.107¢ 003451 5802
4.1074 0-04239 4727 483
1073 005519 3637 367
025 10~ 0-033762 59-308
2.10° 0-042203 47-480
4.107* 0-052654 38-100 395
1073 0070294 28:615 29-1
2.1073 0087183 23153 233
4.1073 010777 18-838 189
1072 014179 14-52 14-52
2.1072 01736 1208 12-08
05 10-¢ 0037125 53-969
2.107¢ 0046689 42:960
4.1074 0-058690 34-233 346
1073 0079350 25418 256
2.1073 0-099610 20-351 204
4,1073 012495 16:356 164
1072 0-16838 12:367 12:37
2.10°2 0-21082 10-127 10-13
4.1072 0-26382 8-434 8-433
1 1074 0039516 50-740
2.107¢ 0049881 40-257
4.107¢ 0-062997 31950
1073 0085863 23-568 235
2.1073 010864 18-754
4.1073 0-13764 14965
1072 018869 11-193 11-2
2.10°2 0-24024 9-081
4.10°2 0-30702 7490 7-4895
Table 6. Solutions of the second kind. Step in heat flux at
the outer wall
r* x T Nu@®  Reference [3]
0 1074 0-046018 43-651
2.1074 0058358 34511
4.1074 0074126 27-276
1073 0-10207 19987
2.10°3 013048 15-813 (1507)
4.1073 0-16751 12-538 (12-42)
1072 023517 9295 9-293
2.1072 0-30689 7-494 7-494
4.1072 0-40528 6:149 6148

Table 6—continued

547

™ x T® Nu®»  Reference[11]
002 107+ 0-043935 45-726
L1074 0055706 36157
L1074 0-070753 28-584 29-3
1073 0-097399 20-956 213
.1073 0-12448 16-589 168
.1073 0-15977 13-164 132
10-2 022419 9776 9-784
.1072 022243 7-898 7-898
.1072 0-38601 6-502 65017
005 1074 0043471 46210
L1074 0055109 36-544
L1074 0-069981 28-894 29-7
10-3 0-096302 21-187 215
L1073 012304 16:774 169
L1073 015784 13314 134
1072 0-22130 9-889 9-895
.1072 028840 7990 7-991
.1072 0-38022 6578 65776
010 104 0-043006 46-703
L1074 0-054505 36940
L1074 0061192 29-212 29-9
1073 0:095162 21426 217
.1073 012151 16967 171
L1073 015576 13-469 13-50
10~2 021808 10-005 1001
.1072 028379 8083 8-083
.1072 037337 6652 66517
025 1074 0042127 47657
L1074 0053353 37713
L1074 0-067665 29-840 302
103 0092907 21904 220
.1073 0-11843 17-356 174
L1073 015148 13-786 13-80
1072 021122 10245 10-25
.1072 027369 8275 8-275
.1072 035799 6-803 6-8025
05 1074 0041098 48-823
L1074 0051989 38-668
L1074 0-065837 30626 30-8
10-3 0-090161 22-516 22:6
.1073 0-11463 17-864 179
L1073 0-14611 14-207 1421
1072 020247 10-574 10-57
.1072 0-26065 8:548 8547
L1072 0-33795 7-027 7-0265

Since, furthermore, the range of X in which the
solutions are valid decreases as r*/(1 — r¥),
solutions with heating at the inner wall are
given only for r* > 01,
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Table 7. Solutions of the third kind. T emperature step at the inner wall

r* x S TS Nu{»  Reference [11]
010 1074 60-873 0-00080 60922
2.107% 49632 000129 49696
4.107% 4068 000210 4077 40-4
1073 31-57 0-00402 3170 315
025 1074 49538 000147 49611
2.107* 39734 000234 39-828
4.107% 31948 000375 32-068 320
10°3 24-053 000702 24223 242
2.1073 19483 001130 19:705 197
4.10°3 15844 001826 16139 1611
1072 12138 0-03460 12:574 12:56
2.1072 9-98 00564 10:57 1057
05 1074 44669 000223 44768
2.107% 35541 000354 35-668
4.107% 28295 000563 28456 284
1073 20954 001041 21-175 2111
2.1073 16711 001658 16993 170
4.1073 13339 002642 13701 1368
102 9916 004900 10-427 1042
2.1072 7930 007824 8-603 8-602
4.107°2 6-341 012501 7247 7-2465
1 1074 41744 000314 41876

2.1074 33-046 0-00498 33212
4.107% 26-141 0-00788 26349
103 19-147 0-01447 19-428 194
2.1073 15-106 0-02288 15459
4.1073 11-895 0-03613 12-341

1072 8638 0-06596 9-248 9-25
2.1072 6750 0-10371 7531
4.1072 5243 0-16253 6260 6259

Table 8. Solutions of the third kind. Temperature step at the outer wall

r* X o TS Nu»  Reference [12]
0 1074 35-612 0-00540 © 35806 35-80
2.1074 28013 0-00853 28-254 28-26
4.1074 21979 001343 22278 22°29
1073 15-867 002442 16264 16:28
2.1073 12:334 003825 12-824 12-82
4.1073 9-526 0-05968 10-130 1013
1072 6-674 010657 7-470 7-470
2.1072 5019 0-16378 6002 6-002
4.1072 3-693 024890 4917 4916
002 1074 37-306 0-00555 37515  Reference [11]
2.1074 29-350 0-00876 29-609
4.1074 23-033 001380 23-355 235
1073 16633 0-02509 17-061 172
2.1073 12934 003930 13-463 136

4.1073 9-993 006134 10-646 10-8
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Table 8—continued

r* x o TS Nul®  Reference [11]
1072 7-006 010958 7-869 7914
2.1072 5272 0-16848 6-340 6350
4.107? 3-881 025616 5218 52174
0-05 1074 37714 000545 37920
2.1074 29-676 0-00860 29934
4.1074 23-296 001355 23616 237
1073 16-832 002464 17257 174
2.1073 13-095 003862 13-621 137
4.1073 10-125 006031 10-774 109
10-2 7-108 010782 7967 8-000
2.1072 5-356 0-16591 6422 6-428
4.1072 3952 0-25255 5287 5-2868
010 1074 38-135 0-00525 38-:367
2.107¢ 30-019 000830 30-270
4,104 23-576 0-01308 23-388 240
1073 17-048 0-02380 17-464 175
2.1073 13-274 003732 13789 139
4.1073 10-276 0-05832 10912 11-00
1072 7-230 010440 8073 8:095
2.1072 5-462 016087 6-508 6-513
4.1072 4-045 024535 5-360 5-3590
025 1074 38972 0-00472 39-157
2.107% 30-710 0-00746 30-940
4,107+ 24-150 001176 24-438 245
1073 17-506 002144 17-889 179
2.1073 13-665 003368 14-141 142
4.1073 10613 005273 11-204 112
1072 7-515 009475 8-301 8311
2.1072 5717 0-14658 6698 6700
4.10"2 4278 022480 5-518 5-5176
05 107# 40015 0-00403 40-177
2.107% 31-583 000637 31786
4.1074 24-890 001007 25143 251
1073 18-109 001840 18-448 185
2.1073 14191 002897 14-614 14-6
4.1073 11-077 0-04549 11-605 11-6
102 7918 0-08222 8:628 8-629
2.1072 6086 012798 6979 6-980
4.1072 4-622 0-19789 5762 57615

COMPARISON WITH PREVIOUS SOLUTIONS

In Tables 5-8 Nusselt numbers from other
sources are included for comparison with the
present results. For the annular passages and the
flat duct the solution by Lundberg et al. [7] is
taken.t The values for the circular tube with a

t Numerical values are taken from reference [11].

step-change in wall temperature are those pre-
sented by Munakata [12] who used the eigen-
values and eigenfunctions computed by Brown
[1]. For the circular tube with a step-change in
heat flux at the wall Nusselt numbers were
computed from the eigenvalues and related
constants given by Sellars et al. [3].

In the downstream part of the range the
agreement with the eigenvalue solutions is
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excellent. For small values of X, however, and
in particular where the previous results are based
on the simple Lévéque solution, the present
solution yields more correct values. The results
for the circular tube with a step-change in the
wall heat-flux show that the seven eigenvalues
computed by Sellars et al. are sufficient only for
X > 107 2. This indicates that from the point of
view of computational effort it would be advan-
tageous to switch from the eigenvalue solution
to the extended Lévéque solution at values of X
in the neighborhood of 1072.

For the circular tube with a step-change in
the wall temperature Munakata [12] obtained
an improved asymptotic solution for small
values of X by replacing the summation of
eigenfunctions by the corresponding integral.
It is interesting to note that the resulting expres-
sions are essentially the same as those obtained
from the first order perturbation of the Lévéque
solution.t

CONCLUDING REMARKS

The present analysis and the subsequent
numerical results have clearly demonstrated the
usefulness of the extended Lévéque solution for
computing heat-transfer rates or wall tempera-
tures in the thermal entrance region with fully
developed laminar flow. With a maximum of
six terms in the fundamental solutions this
method takes over at the point where the
eigenvalue solutions become cumbersome due
to the large number of terms required. The fact
that with this type of solution one cannot
discriminate between different kinds of boundary

+ For the heat flux at the wall Munakata’s result is
(in terms of the present notation):
& = 1:3566(x/4)"F — 121
Apart from a minor difference in the constant term (1-21 vs.
6/5) this is identical with equation (18)for N = 1 and r* = 0.

conditions at the opposite wall is of no conse-
quence if the solutions are used only for X <
1072; up to this point the differences between
solutions of the first and the third kind and
between solutions of the second and the fourth
kind are quite negligible.
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Résumé— Des solutions en séries du type proposé pour la premiére fois par Mercer [9. 10] sont présentées
pour I'écoulement laminaire dans des tubes et des conduites annulaires (y compris la conduite 2 section en
rectangle aplati) avec une variation en échelon soit de la température soit du flux de chaleur 4 I'une des
parois. Ce type de solution—qui peut étre regardé comme une extension de la solution bien connue de
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Lévéque [8] constitue une alternative convenable aux solutions avec valeurs propres dans la premiére
partie des régions d’entrée thermique ol un grand nombre de termes sont nécessaires dans les développe-
ments en fonctions propres.

Zusammenfassung—Reihenldsungen von der Art, wie sie zuerst von Mercer [9, 10] vorgeschlagen wurden,

sind fiir laminare Stromung in Rohren und Ringspalten (einschliesslich ebener Kanile) mit einer sprung-

haften Anderung entweder der Temperatur oder des Wirmeflusses an einer Wand angegeben. Diese Art

der Losung—sie kann als Erweiterung der Leveque—Losung [8] gelten—stellt eine bequeme Alternative

zur Eigenwertlosung fiir den ersten Teil des thermischen Einlaufbereichs dar, fiir den eine grosse Zahl von
Ausdriicken fiir die Eigenfunktionsentwicklung erforderlich sind.

AnHoTamua— {17 TaMIHADHOTO TeYeHNA B TPYyGax M KOJbIEBHX KaHAJIAX, BKIIOYaA IIIOCKHE
KaHAIIH ¢ UBMeHAIomecA CTyIeHYaToll TeMIepaTypoit Ml IIOTHOCTBIO TEMJIOBOTO MOTOKA,
TOJIy4eHH pellleHuA B BHAe PAAOB TUIA, BrEpBHeE NpemioxenHoro Mepcepom [9, 10]. Sror
THI pelieHNA, KOTOPHN MOKHO PAcCMATPUBATh KaK HalbHeltilee DPASBATHE M3BECTHOTO
pemenns Jlesexa [8], yRoOHO MCmoan3oBaTh B Hauajle TEIUIOBOTO BXOXHOrO YYacTKa, rie
IJ1A pasiiomeHnt no coberBeHHHM QYHKIMAM TpebyeTcs GONbLIOE KOJUYECTBO YIICHOB.
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